Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease.

نویسندگان

  • R Siman
  • M Baudry
  • G Lynch
چکیده

The calcium-activated thiol-protease calpain I, which is present in cytosolic and membrane preparations from rat brain, was tested for its capacity to degrade the neuronal spectrin-like protein fodrin. In the presence of micromolar calcium concentrations purified calpain I degraded both purified fodrin and the fodrin present in hippocampal and cerebellar membranes. Fodrin was identified as a high molecular weight protein present in brain membranes by the following criteria: (i) comigration on NaDodSO4/polyacrylamide gels with purified fodrin, (ii) reactivity with antibodies to purified fodrin, and (iii) a proteolytic map following calpain activation comparable to that found after calpain-mediated degradation of purified fodrin. The fodrin breakdown was selective in that calpain I did not affect at least 15 other membrane-associated polypeptides. Fodrin degradation by the protease was rapid and was accompanied by the appearance of a lower molecular weight breakdown product. Calpain I had a high affinity for fodrin, with a Km for degradation of about 50 nM. Purified calpain I also degraded purified spectrin and the spectrin present in erythrocyte membranes. Calpain I-mediated degradation of spectrin-like proteins could provide a mechanism by which brief increases in intracellular free calcium levels modify the structure of the submembraneous cytoskeleton and the distribution of cell surface receptors and alter cell shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP.

Calcium-activated neutral proteinases (CANPs) and their specificities for axonally transported proteins were studied within intact axons of mouse retinal ganglion cell (RGC) neurons in vitro. Two CANP activities with markedly different properties were identified. CANP B, at endogenous calcium levels, selectively cleaved the 145,000 Da (145 kDa) neurofilament protein subunit to yield 143 and 140...

متن کامل

Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons.

The activity of calcium-activated neutral proteinases (CANPs) toward endogenous substrates was measured in axons of retinal ganglion cell (RGC) neurons and separately in adjacent optic glia under in vitro conditions that preserved the ultrastructure and anatomic relationships between these cellular elements. RGC neurons and optic glia both expressed CANP activity. In contrast to RGC axons, whic...

متن کامل

Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.

The calcium-dependent proteolysis of fodrin has been implicated in the regulation of secretion, neutrophil and platelet activation, and long-term potentiation in neurons. In vitro studies indicate that calcium-dependent protease I (calpain I) cleaves fodrin in the middle of the alpha subunit and in the COOH-terminal third of the beta subunit. Cleavage at the beta site requires calmodulin, which...

متن کامل

3-[2-[4-(3-Chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydro-chloride 3.5 hydrate (DY-9760e) is neuroprotective in rat microsphere embolism: role of the cross-talk between calpain and caspase-3 through calpastatin.

Microsphere embolism (ME)-induced cerebral ischemia can elicit various pathological events leading to neuronal death. Western blotting and immunohistochemical studies revealed that expression of calpastatin, an endogenous calpain inhibitor, decreased after ME induction. Calpain activation after ME was apparently due to, in part, a decrease in calpastatin in a late phase of neuronal injury. The ...

متن کامل

Comprehensive survey of p94/calpain 3 substrates by comparative proteomics – Possible regulation of protein synthesis by p94

Calpain represents a family of Ca(2+)-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 11  شماره 

صفحات  -

تاریخ انتشار 1984